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Unsteady-state and steady-state models are used to predict the effective diffusion coefficients, D~fr, of small 
molecules in randomly interspersed polystyrene-polybutadiene blends and comparisons, are' made witl~ 
experimental values obtained by sorption measurements. It is found, that the polyburadiene and polystyrene 
phases are not topologically equivalent. This fact is responsible for the discrepancies bet~veen the 
experimental values of De~ and the predictions from standard steady-sta, te models. 

Simulations of sorption experiments based on an unsteady-state model have shown that values of De~ 
obtained by different methods from the same sorption experiment differ consistently from each other. This 
supports the hypothesis that the experimentally observed differences between the various values of Den, for a 
given blend-permeant pair, can be justified solely on the basis of morphological arguments. 
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INTRODUCTION 

A large fraction of polymer blends have morphologies 
that can best be described as chaotic, i.e., they can be 
specified in a statistical sense. This is true for many blends 
prepared by melt mixing of homopolymers. In many 
instances, one is interested in the transport of gases in 
these materials. Applications arise in a variety of areas: 
transport in packaging films, photographic materials, etc. 
However, the number of suitable predictive models is 
small and there are few explicit comparisons with experim- 
ental data. 

Experimentally, the effective diffusion coefficient, De~ 
(cm2/s) is determined on the basis of transient experiments, 
such as sorption and differential permeation. Usually, one 
of several techniques is used to compute (and define) De~ 
from the transient data. For example, when sorption data 
are available, estimates of De~ can be made by the Initial 
slope, Halt-time and Limiting-slope methods 1. As these 
estimates provide identical values for single-phase ma- 
terials, they have been assumed in the literature to be 
equivalent for binary composites also. However it seems 
likely that some morphological insight may be derived 
from an in-depth comparative study of the estimates of De~ 
obtained by the various methods for a given blend. 

It is obvious that there is a pressing need for models 
capable of simulating transient experiments. Although 
there are models for transient transport processes in 
composite media in the literature 2, they have not been 
used to mimic either sorption or permeation. Ottino and 
Shah 3 reviewed some of these descriptions and presented 
some preliminary simulations of transient sorption and 
permeation processes in composites in which both phases 
had equal solubilities. 

This article is concerned with the predictions of De~ for 
randomly interspersed polymer blends with the help of 
steady-state and unsteady-state models. Emphasis is 

placed on morphological effects rather than on anom- 
alous transport in the polymer phases. The model pre- 
dictions are compared with the experimental data from 
Sax and Ottino 4, hereafter referred to as (I). Probably, 
one of the most significant results obtained in (I) is that the 
different methods used to obtain Den from sorption data 
are not equivalent. Different estimation techniques pro- 
vide different, reproducible values of De, for the same 
penetrant-blend pair. These results cannot be explained in 
terms of any existing model. In this work, we will attempt 
to explain these differences, establish the limitations of t he 
sorption experiment, and discuss its use in probing the 
morphology of a given blend. 

MORPHOLOGICAL INFORMATION 

A superficial examination of the micrographs studied in (I) 
seems to indicate that the two phases are chaotically 
interspersed. However, an in-depth examination reveals 
differences in the characteristic geometry of the clusters of 
the two phases. On one hand, polybutadiene (PB) tends to 
form ramified clusters, that is, clusters with a high surface- 
to-volume ratio. On the other hand, polystyrene (PS) 
tends to form predominantly compact clusters, that is, 
clusters with a low surface-to-volume ratio. Let ~bB denote 
the volume fraction of PB in these blends. Due to its 
geometry, the PB phase tends to form sample-spanning 
clusters at a fairly low volume fraction, 4~. For the same 
reason, PS becomes disconnected also at a fairly low value 
of ~bB. Above this volume fraction, q~, the PS phase is no 
longer continuous. 

It is necessary to try to identify the volume fractions at 
which these transitions occur. The locations of these two 
points have a significant effect on the transport and 
mechanical properties of the blends under consideration. 
The relevant transport property for these blends is the 
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effective permeability, Pelf (defined by the product of the I 010 
effective diffusion coefficient, De~, and the effective solu- 
bility, Se~) because the phases differ in their solubilities 2. 
The relevant mechanical property is the effective tensile c o 
modulus. I 09 o 

The transport data in (I) can be used to determine ~b~ 
because the value of Pe~ undergoes its sharpest change at 
this volume fraction. It is known that, at q~, the effective 
permeability of the blend is given byS: 

Pen=KP~ - "Ps" (1) 

where PA and PB are the permeabilities of the PS and PB 
phases respectively, and u = t/(t + s). It is believed that in 
three dimensions, t=  1.956, s=0.77 and K =0.96 s. 

The value of Pe~ is calculated for each blend-permeant 
pair from the product of De~ (from the half-time method) 
and Se, defined, with little error, by a volume fraction 
average of SA and SB, the solubilities of the PS and PB 
phases respectively (neglecting any synergistic effects). 
The experimental value of S~ is not used due to its high 
degree of uncertainty. The value of Perf at ~b~ is computed 
for each permeant, from the above equation. Then, ~b~ is 
calculated by interpolation between the known values of 
Pe~. The value of ~b~, based on all three permeants, is 
0.18+0.04. 

The value of 4~ can be estimated from the 4~B depen- 
dence of the effective tensile moduli of the blends. The 
largest change in the effective moduli occurs at 4~, above 
which the PS phase is completely discrete (Figure 1)9. It 
can be shown that, at q~,, there is an inflection point in the 
plot of effective moduli versus volume fraction 9. The 
inflection in this system of blends is found to be at 0.58. 

It is noteworthy that ~b~¢l-q~.  This is a clear 
indication that the two phases are not topologically 
equivalent. This conclusion is supported by the skewed 
nature of the plot of intermaterial area density versus dpB 
shown in (I). Thus, the morphology of a blend with a 
volume fraction 4)B is not identical to that of a blend with a 
volume fraction 1 - 4~B. 

STEADY STATE 

Theory 

Although the phases in these blends are not topologi- 
cally equivalent, the morphology is still chaotic as there 
are no apparent signs of order at any scale. Therefore, it is 
natural to use theories based on this assumption for the 
prediction of D,~. Two steady-state theories are especially 
useful for this purpose: Effective Medium Theory (EMT) 
and Real-Space Renormalization Group Theory (RSRG). 
In both these theories, the two phases are assumed to be 
topologically equivalent and the morphology is assumed 
to be perfectly chaotic. 

EMT involves the replacement of the real binary 
composite by an 'effective' medium whose transport 
coefficient is computed by averaging over the hetero- 
geneities in the real composite. This is a lattice-based 
theory and corresponds to a bond-percolation model on 
the lattice selected to represent the composite. Ideally, 
EMT is valid only when the scale of heterogeneities is 
small enough so that there is no 'overlap' between the 
disturbances caused in the overall potential field by these 
heterogeneities. Hence, its validity is questionable in the 
critical region around the percolation threshold of the 
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Figure 1 Effective tensile modulus, Eej r (N/m2), of PS/PB blends v e r s u s  

volume fraction of PB, ~ba. The standard deviation of these data is 6~ 

lattice being used to model the composite, as the length 
scale of the heterogeneities is then on the order of the size 
of the sample. However, it provides accurate predictions 
of Den at other compositions, as long as the morphology is 
chaotic. 

EMT was originally developed for composites whose 
phases have identical solubilities 1°. Davis 1~ made suit- 
able modifications to extend its applicability to com- 
posites whose phases differ in their solubilities. An 
identical result is obtained if the conductivities in the 
original EMT equation ~° are replaced by permeabilities 
and Se, is defined, as before, by the volume fraction 
average. De~ for such composites is given by: 

De~= - -  A +  A + - - S x  (2) 

where A = (z/2)4~B - 1 + Sx{ (z/2)(1 - q~B)- 1 } 
z - 2  

S = SA/SB; X = DA/DB ; Z = coordination number 

An analysis of transport in terms of this model has been 
presented by Sax and Ottino 12. 

RSRG is an analytical technique which gives estimates 
of the effective transport coefficients of composites over 
the entire composition range, including the critical region. 
A review of the various forms of RSRG and its applications 
has been provided by Burkhardt and van Leeuwen la. 
Several investigators have used RSRG to evaluate the 
effective conductivities of dilute resistor networks (net- 
works containing conductors and insulators), especially 
around the percolation threshold of the network ~4-16. 
Recently, Shah and Ottino ~ extended the method to 
evaluate the effective transport coefficients of random, 
space-filling, two- and three-phase composites in two and 
three dimensions. The reader is referred to that work for 
details of the technique. 

1240 POLYMER, 1985, Vol 26, August 



Influence of morphology on transport in PS/PB blends. 2: N. Shah et al. 

The essence of the method lies in the representation of 
the composite by a regular tessellation, whose individual 
cells represent either one phase or the other (site- 
percolation model). Instead of the individual cell, a 
representative group of cells can be considered to be the 
primary building block of the tessellation. Such a group, 
called a renormalization cluster, may contain any con- 
ceivable configuration of phases and hence could be 
homogeneous or heterogeneous depending on whether it 
contains one phase or both. 

The aim of the renormalization process is to replace the 
original heterogeneous tessellation by an equivalent ho- 
mogeneous tessellation whose effective transport coef- 
ficient is known. This is achieved by a sequence of 
averaging operations at the scale of the renormalization 
cluster. For this purpose, it is necessary to classify every 
configuration of phases in the renormalization cluster 
according to the effective transport coefficient of the 
cluster with that configuration. 

At every step of the process, a new tessellation is created 
by replacing every renormalization cluster in the old 
tessellation by a single cell, whose transport coefficient is 
equivalent to the effective transport coefficient of the 
particular cluster. Although this results in the creation of a 
multi-phase tessellation, it is approximated by a tessel- 
lation containing two pseudo-phases, each of whose trans- 
port coefficient is a weighted average of those of the 
phases assimilated into the pseudo-phase. The mor- 
phology is assumed to remain random at each step and 
the volume fraction of the pseudo-phase with the higher 
transport coefficient in the new tessellation is related to 
that in the old tessellation through the renormalization 
group transformation. 

This process is repeated until the group transformation 
reaches one of its stable fixed points. At this point, the 
tessellation contains only one pseudo-phase and is practi- 
cally homogeneous. The effective transport coefficient of 
the original composite is then given by that of the 
tessellation at the fixed point, which in turn is equal to that 
of the only remaining pseudo-phase. 
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Figure 2 Comparison of effective diffusion coefficients determined by 
initial-slope method (O), half-time method (A), and limiting-slope 
method (FI), with predictions from (a) EMT and (b) RSRG. Data 
correspond to diffusion of CO2 in PS/PB blends at 25°C 
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Figure 3 Comparison of effective diffusion coefficients determined by 
initial-slope method (O), half-time method (A) and limiting-slope 
method (D), with predictions from (a) EMT and (b) RSRG. Data 
correspond to diffusion of 02 in PS/PB blends at 25°C 
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Figure 4 Comparison of effective diffusion coefficients determined by 
initial-slope method (©), half-time method (A) and limiting-slope 
method (I-1), with predictions from (a) EMT and (b) RSRG. Data 
correspond to diffusion of N 2 in PS/PB blends at 25°C 

Results and analysis 
Figures 2, 3 and 4 show the comparison between the 

experimental data from (I) and the predictions from EMT 
and RSRG. The three-dimensional cubic lattice is used for 
both theories. One fact stands out immediately: Both 
theories tend to underestimate the value of De~, especially 
in the range 0.2<q~a<0.5. 

The EMT and RSRG models are inadequate for the 
PS/PB system because the phases in these blends are not 
topologically equivalent. The major consequence of this 
fact is that ~b~ is quite low (~ 0.2). This is much lower than 
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that obtained from either model (~  0.3). This explains why 
the data for blends in the range 0.2<qSB<0.3 are so 
drastically underestimated. Although, in this range, the 
blends are actually bicontinuous, the PB phase is still 
considered discrete in both models because the volume 
fraction is still below the percolation threshold. 

At higher volume fractions, the predictions come much 
closer to the experimental data. In this range, the 
experimental values of De~ are higher than expected 
because PS becomes discontinuous at a lower value of ~ba 
than that for the cubic lattice used in both theories. 
However, here the discrepancies are less pronounced 
because the change in De~ due to the breakdown of the last 
continuous cluster of PS is much smaller than that caused 
by the formation of the first continuous cluster of PB. 

This analysis of the discrepancies between predictions 
and data does not consider any special morphological 
features that may have been built in during the sample 
preparation process and may not be visible in the 
micrographs. The tendency of PB to form ramified 
clusters is due to its low viscosity compared to that of PS 
during the blend formation process. The high mobility of 
PB might allow it to move close to the boundary of the 
film during its moulding stage. The resultant increase in 
accessibility of PB clusters from the boundary would 
enhance the underestimation of the data by the two 
theories. 

UNSTEADY STATE 

Theory 
The transient process of sorption of a permeant can be 

simulated by representing the composite by a regular 
tessellation created by dividing space into identical, 
regular, convex domains, or cells, each of which is in 
contact with the same number of neighbours. In two 
dimensions, tessellations may be built with triangular, 
square or hexagonal cells and in three dimensions, they 
may be composed of cubic cells. 

The simulations in this article are based on a two- 
dimensional hexagonal tessellation. A two-dimensional 
tessellation was chosen so as to minimize the expense of 
carrying out simulations and the hexagonal geometry was 
selected because its co-ordination number is the highest 
among regular two-dimensional tessellations and is equal 
to that of the two-dimensional Voronoi tessellation 
(which has a random topology and geometry). The two- 
phase nature of the blend is simulated by labelling the cells 
either A or B. The morphology being modelled dictates 
the number and locations of the two types of cells. If the 
morphology is perfectly chaotic, then it is completely 
specified by the volume fraction, q5 B. The probability that 
a given cell is labelled B is equal to tkB. 

The concentration field of any permeant in a blend is 
obtained by solving the equations for the conservation of 
mass in all the N cells in the tessellation representing the 
blend. (The mass conservation equation for each cell is 
often referred to as the master equation is, which is the 
precursor of the Fokker-Planck and the diffusion equa- 
tions.) The average concentration, Ci, in any cell i with j 
nearest neighbours is given by: 

dC Jdt = ~ % ( K  q -  C ,) (3) 
J 

The concentration field is obtained by solving this set of 
coupled, linear, ordinary differential equations with the 
appropriate boundary conditions. Sorption boundary 
conditions are imposed in the flux direction and cyclic 
boundary conditions are imposed in the direction normal 
to the flux. Physically, these boundary conditions si- 
mulate sorption into a semi-infinite film with a finite 
thickness. Here, W~j is a transition rate for diffusion of the 
permeant between cells i and j. Ottino and Shah 3 have 
related W 0 to the diffusion coefficients of the two phases 
and the parameters that define the geometry of the cells 
constituting the tessellation. Kq is the ratio of the solu- 
bility of the permeant in the phase represented by cell i to 
that in the phase represented by cellj. When cells i andj  
represent the same phase, W~j is directly proportional to 
the diffusion coefficient of that phase. When they repre- 
sent different phases, W~j is assumed to be proportional to 
the diffusion coefficient of the less permeable phase. The 
last assumption results in conservative estimates of Do~. (It 
is clear that if N--.oo and { Wq} are selected 'appropriately', 
this model would provide 'exact' solutions to transport 
problems in composites with any arbitrary morphology.) 

The dimensionless variables are defined as follows: 

Ci= C/Cb 

where Cb is the gas phase concentration of the permeant, 

Z = W°t 

where z is the dimensionless time and W ° is the transition 
rate between cells containing the more permeable phase, 
and 

Rij = Wij/W ° 

where R~i is either unity or equal to the ratio of the 
diffusion coefficients of the two phases, depending on the 
identities of i and j. 

In dimensionless form, equation (3) can be rewritten as: 

dt~Id~ = ~ Rij(KijCj- Ci) (4) 
J 

For all the interfaces exposed to the gas phase, Kij is 
equal to the solubility S~ of the permeant in cell i and Cj 
is obviously equal to unity. Assuming Henry's law, this 
solubility can be defined by: 

~i=s~c~ (5) 

that is, Si is the ratio of the polymer phase concentration of 
the permeant to its gas phase concentration, C~. 

The solution of this set of equations provides estimates 
of Ci as a function of T for all cells i. The mean 
concentration in the blend is defined by: 

and is proportional to the mass uptake of the permeant in 
the blend. Neglecting synergistic effects, the equilibrium 
concentration (z- -~)  of the permeant in the blend is given 
by: 
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c~ = [ 4~BSB + ( 1  - 4JB)SA ]G (7) 10 .5 i 

and is proportional to the equilibrium mass uptake in the 
blend. Then, the fractional mass uptake (ratio of the mass 
uptake at time z to the equilibrium uptake) is given by: 

M,/Moo =Ca/Coo (8) 

Felder and Huvard 1 and Berens 19 provide three me- 
thods for evaluating the effective diffusion coefficient, Dell, 
from sorption measurements. 

(a) Initial slope method: 

Bert~ [d(M~/M~)/dzll2] 2, for z---,O 
D~ll=DB[(Initial slope)bte~d/(Initial slope)B] 2 

(b)Half-time method: 
If ~1/2 is the time at which MUMOO becomes equal to 1/2, 

De~,-, 1/z 

(c) Limiting slope method: 

De~--. d{ln(1 - M~/Moo)}/dz, for z--+oo 
De,=Da[(Lim. slope)ble,d/(Lim, slope)B] 

It should be noted that these three methods are defining 
Daf by analogy with the definitions for a pure material. Of 
course, for a pure material, all the estimates of De~ should 
be identical. 

Results and analysis 
Figures 5, 6 and 7 provide comparisons between the 

experimental data from (I) and the predictions from the 
unsteady-state model. Three realizations were carried out 
for each blend-permeant pair and the mean values have 
been shown in these Figures. The percentage deviation of 
the half-width of the 957/0 confidence interval from the 
mean value was computed for every method of estimating 
De~ for each blend-permeant pair. The values range from 1 
to 55~o. The confidence interval is narrow at low and high 
values of ~bB and is widest, as expected, in the vicinity of the 
percolation threshold of the tessellation. (Near the percol- 
ation threshold, two different realizations may produce 
two composites with the same volume fraction of PB but 
with vastly different morphologies: one, in which the PB 
phase is continuous and the other, in which it is still 
discontinuous.) 

It is noteworthy that the unsteady-state model also 
provides three different estimates of Dell for each blend- 
permeant pair. The simulations confirm that the differ- 
ences between the various estimates of Dell obtained 
experimentally can be theoretically reproduced without 
invoking any 'anomalous' behaviour on the part of the 
blend. The heterogeneity of the blend is at least partly 
responsible for this phenomenon. This raises the possi- 
bility of obtaining some qualitative morphological infor- 
mation from the observed trend in Den for a given blend. 

The simulations underestimate the values of Dell ob- 
tained in (I) for several reasons. These are: (1) The site 
percolation threshold of the two-dimensional hexagonal 
tessellation is 0.5. Consequently, there is a large difference 
between the percolation thresholds of the blend system 
and this tessellation. (2) The simulations were carried out 
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Figure 5 Effective diffusion coefficient, Den-, of 02 in PS/PB blends 
v e r s u s  volume fraction of PB, ~B. Filled symbols: experimental data 
from (I); open symbols: predictions from unsteady-state model 
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Figure 6 Effective diffusion coefficient, Dell, of N 2 in PS/PB blends 
v e r s u s  volume fraction of PB, ~b B. Filled symbols: experimental data 
from (I); open symbols: predictions from unsteady-state model 

on chaotic composites in which both phases were to- 
pologically equivalent. As noted before, the two phases in 
the blends are not topologically equivalent. (3) A two- 
dimensional tessellation does not allow bicontinuity and 
the blends are evidently bicontinuous over a fairly wide 
range of volume fractions. 

The unsteady-state simulations are carried out on the 
basis of computer-generated composites whose mor- 
phology is prescribed by the user. Simulations on a 
composite with a fixed volume fraction of PB, but with 
different morphologies, confirm the hypothesis that the 
relative magnitudes of the various estimates of De~ reflect 
different aspects of the morphology of the blend. Since it is 
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Figure 7 Effective diffusion coefficient, Den-, of CO2 in PS/PB blends 
versus volume fraction of PB, ~b B. Filled symbols: experimental data 
from (I); open symbols: predictions from unsteady-state model 

Figure 8 Effective diffusion coefficient, Ddr , versus volume fraction of 
PB, ~B. Solid line: RSRG prediction. Data points: unsteady-state model 
(tessellation size is the same as that used for the results shown in Figures 
5, 6 and 7) 

impossible to duplicate the blend morphology exactly, it 
is not surprising that the predicted trends in Dog do not 
correlate exactly with the experimental data. 

It may be suspected that the results obtained by the 
above simulations may be influenced by the finite size of 
the tessellation. Figure 8 shows a comparison between 
estimates of D~ from transient simulations (data points) 
and those obtained by RSRG (solid line), both based on a 
two-dimensional hexagonal tessellation. As the RSRG 
result is thickness-independent, it is clear that the results 
presented here are not artifacts of the finite size of the 
tessellation. 

MORPHOLOGY DEPENDENCE OF THE 
TRENDS IN Do~ 

Since it appears that the various estimates of/)err are 
affected by different aspects of the blend morphology, it is 
necessary to understand the factors that influence the De~ 
trends obtained theoretically and experimentally. It is 
obvious that all the methods for estimating D,~ are 
dependent on the rate of increase of MJMo o  with time. In 
the absence of any synergistic effects, Mo~ is a thermo- 
dynamic quantity that is fixed for a given blend-permeant 
pair and can be determined exactly on the basis of the 
solubilities of the phases and the blend composition. 
Hence, the rate of increase of M t is the sole quantity of 
interest. 

Mt is the sum of the mass uptakes in both the phases in 
the blend. The mass uptake, M~ in phase i, is directly 
proportional to the average concentration of the per- 
meant in that phase. The rate of increase of the average 
concentration depends on the diffusion coefficient of that 
phase, the concentration gradients imposed on the clus- 
ters of that phase and the surface area of the clusters. The 
role of the diffusion coefficient is obvious and as far as 
surface area is concerned, ramified clusters allow higher 
rates of mass uptake than compact clusters because of the 
higher mass flowrates into and through them. 

The concentration gradient imposed upon any cluster 
is dependent on: 

(i) Time scale of diffusion of the permeant from the 
boundary to the cluster (depends on its distance from the 
boundary and the effective diffusion coefficient of the 
material separating it from the bofindary). 

(2) The solubility of the permeant in the cluster. A 
higher solubility results in a higher concentration 
gradient. 

(3) The average length of the cluster in the direction 
normal to the boundary at which sorption boundary 
conditions are imposed. As the rate of decrease of 
concentration from the boundary of the film to its centre is 
faster than linear, the concentration gradient on a cluster 
depends inversely on this average length. Therefore, small 
clusters have a strong influence on the rate of change of Mi 
for short times and long clusters exert a milder influence, 
but for longer times. 

The initial slope method is based on the rate of increase 
of Mi at short times, when the permeant is yet to diffuse 
significantly into the bulk of the film. The rate is primarily 
dependent on the composition of the blend on and near 
the boundary of the film. The accessible area fractions of 
the two phases determine the ease of entry of the permeant 
into the film. The surface-to-volume ratio of the clusters in 
this region also determines the time period for which they 
exert an influence on the rate. 

Usually, the estimate from the half-time method is more 
representative of the whole composite than either of the 
other two estimates. By the time Mr/M ~ is equal to 0.5, the 
permeant has encountered more of the blend than just the 
boundary and yet, the experiment is not at the point where 
almost all the mass uptake is taking place primarily in the 
matrix phase. 

Towards the end of the experiment, the rate of increase 
of Mi is dictated by the relevant time scales of diffusion 
into the two phases. These time scales are directly 
proportional to the square of the average cluster sizes of 
the phases and inversely proportional to the diffusion 
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Table I Prediction of trends in Den- for blends with specific macroscopic morphological features. Phase A has a lower permeability than phase B. Dis, Dh~ 
and Dl~ are estimates of D ~  obtained by the initial-slope, half-time and limiting-slope methods respectively 

Volume fraction Morphology Predictions 

~bB---,0 Matrix: A. Dispersed B 

0<~bs<~b ~ Matrix: A. Dispersed: B 

4,~<4,B< 0.5 

0.5< q~s< q~ 

Phases are bicontinuous 

Phases are bicontinuous 

Matrix: B. Dispersed: A 

~bn--~l Matrix: B. Dispersed: A 

B is close to the boundary 
B is randomly distributed 

B is close to the boundary 

B is randomly distributed 

B clusters are compact 
B clusters are ramified 

A clusters are compact 
A clusters are ramified 

A is close to the boundary 

A is randomly distributed 

A is close to the boundary 
A is randomly distributed 

Dis > Dht > Dis 
Dht ~ Dis > Dis 

Compact  clusters Dis >Dht > Dis 
Ramified clusters Dis > Dht > Dis 
Compact clusters Dht > Dis > Dis 
Ramified clusters Dht > Dis > Dis 

Dis ~ Dht > Dis 
Dis > Dht > Dis 

Dis > Dht > Dis 
Dis > Dht ~ Dis 

Compact  clusters Dl. ~ > Dht ~ Dis 
Ramified clusters Dis ~ Dis > Dht 
Compact  clusters Dis ~ Dis > Dht 
Ramified clusters Dis ~> Dis > Dht 

Dis > Dht ;~ Dis 
Dis ~ Dis > Dht 

coefficient. The estimate of Den from the limiting slope 
method is more strongly affected by the diffusion coef- 
ficient of the phase with the longer time scale. For 
example, in the PS/PB system, the PS phase has a longer 
time scale at all volume fractions below 4~. But, at higher 
volume fractions, the PB phase has the longer time scale 
because the PS phase is only present in the form of small, 
compact clusters. 

Usually, blends prepared by melt-mixing are assumed 
to have chaotic morphologies. However, as noted before, 
deviations from this ideal have been found experimen- 
tally. One important form of deviation involves the 
violation of the assumption that a blend is statistically 
homogeneous. This results in macroscopic spatial de- 
viations from the average value of ~bB for the blend (for 
example, skin-core effects). The other important form of 
deviation is a consequence of the tendency of one of the 
phases to form predominantly compact or predominantly 
ramified clusters. The above observations on the 
morphology dependence of the various estimates of D~rr 
are useful in qualitatively predicting trends in D,rr for 
blends with morphologies that exhibit such deviations 
from the ideal of statistical homogeneity (Table 1). 

These predictions can be checked with the data avail- 
able in (I) (Table 2). For all the bicontinuous blends 
(qSB = 0.23, 0.312 and 0.516), there is enough information 
to predict the trends in Deft correctly. For all the other 
blends, the micrographs are insufficient for complete 
characterization and two alternative predictions are avail- 
able for each blend. In each case, it is found that the 
experimental trend agrees with at least one of the 
predictions. This provides additional insight into the 
morphologies of these blends. It can be concluded that PB 
is highly accessible from the boundary of the film at all 
volume fractions, while PS is always randomly distributed 
in the bulk of the film. 

CONCLUSIONS 

Several conclusions can be drawn from the above appli- 
cations of steady-state and unsteady-state theories to the 
polymer blends described in (I): 

(1) Theories based on disordered, lattice-based com- 
posites, are inadequate for predicting the behaviour of 
blends whose components are not topologically 
equivalent. 

Table 2 Comparison of the predicted trends for the blends in (I) with the experimentally observed trends 

Experimental 
Volume fraction Morphology Prediction trends Conclusions 

0.08 Matrix: PS; Dispersed: PB; q~B~0 Dis>Dht>Dis Dis>Dht>Dls 
o r  

Dht ~ Dis > Dis 

0.1584 Dis > Dht > Dis Dis > Dht > Dls 
or 
Dht > Dis > Dis 

Dis > Dht > Dis --  0.23 and 0.312 

0.516 

0.76 

Matrix: PS; Dispersed: PB; 0 < ~b B < q~; 
clusters of PB are ramified 

Blends are bicontinuous; ~b~ < ~b B < 0.5; clusters of PB 
are ramified 

Blend is bicontinuous; 0.5 < q~a < ~b~; clusters of PS are 
compact 

Matrix: PB; Dispersed: PS; q~<~bB< 1; 
clusters of PS are compact 

Dis > Dht > Dis 

Dis > Dht > Dis 

Dis > Dht > Dis 

Dis > DIs > Dht Dis > Dht ~ Dis 
o r  

Dis >~ Dis > Dht 

0.9 Matrix: PB; Dispersed: PS; ~bB--* 1 Dis>Dht~Dis Dis>Dht~Dl,, 
o r  

Dis ~> Dis > Dht 

Clusters of PB are accessible from 
the boundary 

Again, PB is freely accessible 

PS is randomly distributed in the 
bulk 

PS is randomly distributed 
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(2) Sorpt ion and permeation experiments on polymer  
blends can now be simulated with the help of  a new 
unsteady-state model. Such simulations have also re- 
sulted in variations between various estimates of  D~ 
obtained for a given blend-permeant  pair. This indicates 
that  the data  reported in (I) may  be unders tood on the 
basis of  morpho logy  alone. 

(3) The observed trend in D~ is strongly dependent on 
the morpho logy  of the blend. This is true for both  real and 
computer-generated blends; hence, it is a lmost  impossible 
to reproduce experimental trends exactly, as the mor-  
phology of  the actual blend can never be exactly simu- 
lated. However,  qualitative predictions can be made for 
the trends in blends with certain types of  morphologies  if 
it is assumed that  the heterogeneity of  the blends is solely 
responsible for the discrepancies between the various 
estimates of  D~. 

(4) Different effective diffusion coefficients are valid for 
t he same blend depending on the extent of  exposure of  the 
blend to the permeant.  (The diffusion coefficient appears 
to be time-dependent.) This fact has impor tant  ramifi- 
cations in the context  of  the utilization of  these blends in 
permeant-r ich environments.  

(5) Experimental  t ransport  measurements  can be used 
to confirm and complement  morphological  information 
obtained from studying micrographs  of polymer  blends. 
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